Wet adhesion of graphene

نویسندگان

  • Wei Gao
  • Kenneth M. Liechti
  • Rui Huang
چکیده

Interfacial adhesion between graphene and various substrate materials is essential for practical applications of graphene. To date, most of the studies on adhesion of graphene have assumed dry adhesion of van der Waals type. In this paper, we conduct molecular dynamics simulations to study the traction–separation behaviors for wet adhesion of graphene on amorphous silicon oxide covered by a thin layer of water. Three stages of the traction–separation relations are identified and they are analyzed by simple, approximate continuum models. The work of separation is found to be close to the theoretical value dictated by the interaction potential between graphene and water. The maximum traction is found to be set by the critical stress for cavitation at the water/graphene interface. With morphological evolution of water from cavitation to capillary bridging, the range of interaction extends to about 3 nm before complete separation of graphene. Compared to van der Waals interactions for dry adhesion of graphene, the work of separation for wet adhesion is smaller, the maximum traction is lower, but the interaction range is longer. It is noted that the properties of wet adhesion depend sensitively on the graphene–water interactions, which may vary considerably from hydrophobic to hydrophilic interactions. © 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra long-range interactions between large area graphene and silicon.

The wet-transfer of graphene grown by chemical vapor deposition (CVD) has been the standard procedure for transferring graphene to any substrate. However, the nature of the interactions between large area graphene and target substrates is unknown. Here, we report on measurements of the traction-separation relations, which represent the strength and range of adhesive interactions, and the adhesi...

متن کامل

Radical-assisted chemical doping for chemically derived graphene

Carrier doping of graphene is one of the most challenging issues that needs to be solved to enable its use in various applications. We developed a carrier doping method using radical-assisted conjugated organic molecules in the liquid phase and demonstrated all-wet fabrication process of doped graphene films without any vacuum process. Charge transfer interaction between graphene and dopant mol...

متن کامل

Effect of Graphene Oxide Decorated With Synthesized Nano-CeO2 on Barrier Properties of Epoxy Anticorrosion Coatings

In this paper, graphene oxide decorated with cerium oxide (CeO2) nanoparticles was prepared and used as anticorrosive pigments in epoxy nanocomposite coatings. The synthesized nanoparticle was characterized by FTIR, XRD, SEM, and EDX analyses. Graphene oxide decorated with CeO2 nanoparticles was dispersed in epoxy resin by sonication. The optimum nanoparticle content of th...

متن کامل

Adhesion mechanics of graphene membranes

and theoretical advances in the understanding of graphene adhesion. We organize our discussion into experimental and theoretical efforts directed toward: graphene conformation to a substrate, determination of adhesion energy, and applications where graphene adhesion plays an important role. We conclude with a brief prospectus outlining open issues. & 2012 Elsevier Ltd. All rights reserved.

متن کامل

Measuring graphene adhesion using atomic force microscopy with a microsphere tip.

Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015